ProstoTECH - Новости современных технологий 2017 года

Последние новости

19:16
Кинопарк "Москино" отметит День города большим музыкальным шоу
22:16
UTribe начинает полномасштабную работу: цифровое золото для всех
21:09
Криптокредитование от Granthera — скорость и доверие
20:09
Департамент спорта Москвы поддержал теннисный турнир памяти Юрия Лужкова
19:04
Система экологического менеджмента подтверждает эффективность программ KAMA TYRES
12:20
Почему "бесплатный интернет" опасен: разъясняет Алексей Кузовкин
17:45
Интеграция Carrot quest и amoCRM позволяют в несколько раз быстрее обрабатывать обращения
17:28
Почтовая марка и выставка «Москва и жизнь»: в столице вспоминают Юрия Лужкова
14:47
Безопасность, скорость и адаптивность российских ИТ-решений
09:23
Путь Виктора Мангазеева от турагенства до проекта Tiger Trade
13:38
Эксперты оценили программу Get More от Granthera Group
21:27
Малайзийский султан осмотрел вертолетную технику на заводе в Казани
17:20
Восстановление BTC в июле создает окно возможностей для майнеров
13:19
Логистические компании отметили повышенный спрос на канцтовары
07:38
ATAMAI: как российский бренд ноутбуков меняет рынок техники в условиях импортозамещения
20:48
Green Retail 2025: VI конференция для садовых центров, питомников и ритейлеров загородного рынка пройдет с Москве
18:15
МРКФ-2025: география кинофестиваля охватит более десятка городов России
21:10
Работников шинной отрасли наградили в столице Татарстана
20:53
Янтарный стиль по-русски: уникальную коллекцию костюмов покажут на AmberForum'25
21:43
ООО Континенталь внедрило новую схему поставки металла
21:22
Второй Национальный форум «Прикладной искусственный интеллект: решения для взрывного роста экономического развития. Будущее сегодня»
19:18
Ювелиры Янтарного комбината Ростеха превратили янтарь в изумруд
17:27
Государство, креативные индустрии и бизнес должны, объединившись, задавать вектор развития страны: Эд Барк
19:34
Экстрим на бетоне: скейтеры и BMX-звёзды устроили шоу в парке Юрия Лужкова
13:42
Трамп против Пауэлла: сражение вокруг штаб-квартиры ФРС
01:11
«Русский Свет» и Novo BI начинают цифровую трансформацию процессов планирования и логистики
23:51
Аудиоиндустрия 2025: экспертный разбор новинок, провалов и будущего технологий от Артёма Иванова
18:10
Яуза, Таганка, МГУ: ретроралли покорило знаковые точки Москвы
11:03
Предпоказ уникальных аукционных лотов в Москве устроил Янтарный комбинат Ростеха
08:32
В рамках фестиваля The BOWL 2025 в парке Юрия Лужкова пройдут бесплатные мастер-классы по скейтбордингу
01:16
Ольга Нестеренко стала украшением номера модного международного журнала «Grazia Bulgaria»
16:44
Fix Price помог облагородить территорию усадьбы Брянчаниновых в Вологде
10:04
Артем Щепинов рассказал, почему реестр оборудования для майнинга выгоден как властям, так и участникам рынка
Больше новостей
» » Panasonic и SVL представили собрание мультимодальных образцов бытового поведения людей
-

Panasonic и SVL представили собрание мультимодальных образцов бытового поведения людей

Поделиться:
Стартапы
3 574
Созданная ими библиотека паттернов сможет использоваться в системах умного дома на базе искусственного интеллекта
Сделать умный дом по-настоящему умным и помочь ему адекватно воспринимать действия своих хозяев помогут исследования японской компании Panasonic и лаборатории знаменитого Стэндфордского университета – Stanford Vision and Learning Lab (SVL), специализирующейся на разработках в области компьютерного зрения, искусственного интеллекта и роботизации. В середине октября стороны представили и открыли для разработчиков первую и пока крупнейшую (по состоянию на 15 октября 2020 г.)  в мире библиотеку Home Action Genome – собрание мультимодальных образцов бытового поведения людей. Кроме того, Panasonic и SVL запустили конкурс по разработке компьютерных алгоритмов, позволяющих точно распознавать действия людей, на базе новой библиотеки.
Одной из главных проблем в развитии систем умного дома до сих пор оставалось обучение машин пониманию и адекватной трактовке всего, что происходит перед ними. Существующие базы данных были небольшими и состояли преимущественно из аудио и картинок. 
Новая библиотека содержит обширный набор изображений и количественных показателей, дополненных данными с многочисленных сенсоров, в т.ч. видео и тепловых, которые описывают ситуации, ежедневно происходящие практически в каждом доме. В общей сложности библиотека включает 3500 сценариев действий, которые могут выполняться разными людьми в разных местах. Все действия разделены на 70 категорий. Каждый из таких наборов содержит аннотацию, однозначно обозначающую происходящее.
Например, чтобы определить, что делает человек на изображении, система учитывает данные:
  • видеокамеры;
  • инфракрасного датчика (где конкретно находится человек, какие части его тела в данный момент теплее, находятся в движении);
  • микрофона (сопровождается ли действие звуком и насколько громким);
  • RGB-аналитики (данные об интенсивности для красного, зеленого и синего видимого света);
  • датчика освещенности (наличие и интенсивность внутреннего освещения в комнате);
  • гироскопических датчиков и акселерометров (данные об угловой скорости и ускорении человека/ его рук);
  • геомагнитного датчика.
Проанализировав и сравнив полученную информацию с существующими сценариями, умный дом сможет однозначно определить, что его хозяин бреется, и сделать соответствующий вывод: например, потом он пойдет пить утренний кофе, а значит, нужно включить кофемашину.
Или другой пример, описывающий непосредственный процесс мышления умного дома. Система определяет не только то, что человек в принципе находится в прачечной, но и его конкретные операции – как он подошел к стиральной машине, положил в нее белье, затем достал его. По сумме всех этих операций она сможет однозначно заключить, что еженедельная стирка закончена, и следует активировать следующий алгоритм. Например, через 10 минут выключить свет и включить вентиляцию в прачечной. 
Разработчики систем искусственного интеллекта смогут воспользоваться библиотекой Panasonic и SVL для создания собственных AI-алгоритмов и решений, облегчающих жизнь и быт людей, что является основополагающей миссией корпорации Panasonic.
Кроме того, SVL разработала и представила программу видеоматериалов для студентов и разработчиков систем машинного зрения и т.п. https://camp-workshop.stanford.edu/
Одно из наиболее интересных выступлений, объясняющих актуальность подобной библиотеки действий, – доклад Ивана Лаптева, старшего исследователя центра INRIA Paris и главы учёного совета VisionLabs, доступен по ссылке https://www.youtube.com/watch?v=jhHbShSg09Y&feature=youtu.be 
Для получения дополнительной информации обращайтесь в агентство Дайнемик Коммуникейшнс / Dynamic Communications по адресу http://dynamicmoscow.com
 
Система комментирования SigComments